Predicted reentrant melting of dense hydrogen at ultra-high pressures
نویسندگان
چکیده
The phase diagram of hydrogen is one of the most important challenges in high-pressure physics and astrophysics. Especially, the melting of dense hydrogen is complicated by dimer dissociation, metallization and nuclear quantum effect of protons, which together lead to a cold melting of dense hydrogen when above 500 GPa. Nonetheless, the variation of the melting curve at higher pressures is virtually uncharted. Here we report that using ab initio molecular dynamics and path integral simulations based on density functional theory, a new atomic phase is discovered, which gives an uplifting melting curve of dense hydrogen when beyond 2 TPa, and results in a reentrant solid-liquid transition before entering the Wigner crystalline phase of protons. The findings greatly extend the phase diagram of dense hydrogen, and put metallic hydrogen into the group of alkali metals, with its melting curve closely resembling those of lithium and sodium.
منابع مشابه
National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP; P
The phase diagram of hydrogen is one of the most important challenges in high-pressure physics and astrophysics. Especially, the melting of dense hydrogen is complicated by dimer dissociation, metallization and nuclear quantum effect of protons, which together lead to a cold melting of dense hydrogen when above 500 GPa. Nonetheless, the variation of the melting curve at higher pressures is virt...
متن کاملRaman Spectroscopy of Hydrogen Confined under Extreme Conditions
The challenge of confining hydrogen and its isotopes at high pressures and temperatures have hindered exploration of the predicted novel phases and their properties in static high P-T experiments. We have developed new methods to achieve good local confinement of hot, dense hydrogen that additionally protects the diamond anvils during the experiments. Raman spectra of such locally confined hydr...
متن کاملAnomalous melting behavior of solid hydrogen at high pressures
Hydrogen is the most abundant element in the universe, and its properties under conditions of high temperature and pressure are crucial to understand the interior of large gaseous planets and other astrophysical bodies. At ultra-high pressures solid hydrogen has been predicted to transform into a quantum fluid, because of its high zero-point motion. Here we report first-principles twophase coex...
متن کاملEvidence for a first-order liquid-liquid transition in high-pressure hydrogen from ab initio simulations.
Using quantum simulation techniques based on either density functional theory or quantum Monte Carlo, we find clear evidence of a first-order transition in liquid hydrogen, between a low conductivity molecular state and a high conductivity atomic state. Using the temperature dependence of the discontinuity in the electronic conductivity, we estimate the critical point of the transition at tempe...
متن کاملLiquid-solid transition in fully ionized hydrogen at ultra-high pressures.
We study the phase diagram of an effective ion model of fully ionized hydrogen at ultra-high pressure. We assume that the protons interact with a screened Coulomb potential derived from a static linear response theory. This model accurately reproduces the physical properties of hydrogen for densities greater than g/ρ(m)=10 cm(3) corresponding to the range of the coupling parameter r(s) ≲ 0.6. T...
متن کامل